Security and Al-Enabled Cellular RAN

T. Charles Clancy, PhD Senior VP & General Manager, MITRE Labs

NSF NextG Workshop, October 2020

Approved for Public Release Distribution Unlimited Case Number **20-02772-4** MITRE | SOLVING PROBLEMS FOR A SAFER WORLD"

AI/ML in 5G+

O-RAN Reference Architecture

Image Credit: http://www.techplayon.com/open-ran-o-ran-reference-architecture/

O-RAN Interfaces & Policies

O-RAN Interfaces & Policies (2)

Policy create procedure;Policy query procedure;Policy update procedure;Policy delete procedure;Policy feedback procedure;

O-RAN Alliance, "A1 interface: General Aspects and Principles", September 2019

© 2020 THE MITRE CORPORATION. ALL RIGHTS RESERVED.

O-RAN RIC Use Cases

- Phase 1
 - Traffic Steering
 - QoE/QoS Optimization
 - Massive MIMO Optimization
- Phase 2
 - RAN Slice SLA Assurance
 - V2X Handover
 - UAV Resource Management

Explicit support for Machine Learning (ML) based approaches to automation, training off the observables (O1)

O-RAN Alliance, "O-RAN Use Cases and Deployment Scenarios", February 2020

Generic ML Threat Models

Potential Adversary Capabilities Runtime Runtime Outputs Inputs View, Modify, View, Modify, Insert, Delete Insert, Delete **ML** Model View, Modify, View, Modify, Hyper Weights Insert, Delete Insert, Delete Params View, Modify, Training Insert, Delete Data

Classes of adversary objectives

- Compromise Confidentiality:
 - RE model
 - RE training data
 - Estimate/anticipate inputs/outputs
- Compromise Integrity:
 - Produce incorrect outputs
 - Produce deterministic outputs
- Compromise Availability:
 - Degrade model performance
 - ML DoS?

Generic AI System Threat Model

- Same issues exist zooming out to larger Al systems
- View, modify, insert, delete inputs, outputs, models, controller, etc
- Compromise Confidentiality:
 - RE system controller
 - Estimate/anticipate inputs/outputs
- Compromise Integrity:
 - Produce incorrect outputs
 - Produce deterministic outputs
- Compromise Availability:
 - Degrade system performance
 - Cause system failure

Attacker Objectives for RIC

- Compromise Confidentiality
 - Identify metadata about network users, to include sensitive classes like IIoT or public safety
- Compromise Integrity
 - Skew resource allocations in a greedy way or to potentially exploit billing
- Compromise Availability
 - Skew resource allocations to cause disruption to safety-critical services like IIoT, or mission-critical comms like public safety

Attack Surface for RIC

- Key assumption: assume that all interfaces (e.g. A1, E2, O1) are sufficiently protected to prevent protocol exploitation
 - Leverage existing 3GPP security models for IPsec or TLS
 - Address PKI and key management issues
- Observables (O1)
 - Influence observables by creating artificial traffic demands in the network to influence model inputs
- Third Party Applications
 - The RIC envisions 3rd party "apps" whole range of opportunities for exploitation
- System Inputs/Database
 - RAN intent
 - Enrichment information
 - AI/ML components used throughout the system

Hypothetical Example

- Metro-scale edge cloud environment
- ~100 different radio edge clouds operating within the edge cloud, each covering ~100 cell sites
- Multiple network slices operating over the 5G core: EMB + URLCC (CAV) + URLCC (UAS)
- Each network slice has own apps/models for controlling resource allocation

Hypothetical Example continued...

- UAS slice has unique challenges airborne LOS for low frequency reuse factors
- RIC anticipates path-aware resource allocation to combat this
- Spoofing UAS locations/paths to overlap can cause interference carve-out significantly depleting the eigen-capacity of MU-MIMO cells
- These hard constraints prevent other network slices (EMB, CAV) from operating effectively

Recommendations for O-RAN

Basics

- Import robust authentication and encryption for O-RAN interfaces from the current 3GPP standards
- Address key management issues O-RAN seeks to promote vendor diversity, so an approach inclusive of many vendors is required (CA?)
- Code signing for third party apps, with some sort of testing regime
- AI Systems
 - Sophisticated AI-based controllers need fallback to policy-based controllers less efficiency but greater predictability
 - Need for guardrails that can trigger human intervention

Broader Ecosystems

- RF Machine Learning
 - Growing set of literature on security concerns around RFML
 - Need to carefully assess these, particularly as they find their way into 6G
- AI for Scalable Orchestration
 - Current lack of systematic security features in Management and Network Orchestration (MANO) tools – e.g. ONAP, SDN controllers, etc
 - Need to firm up basic security principles before we can start to address AI
- Intelligent Application Edge
 - Many emerging edge computing frameworks mix of IaaS/PaaS/SaaS
 - Some PaaS/SaaS AI frameworks, and no real security discussion yet

© 2020 THE MITRE CORPORATION. ALL RIGHTS RESERVED.