NSF NextG Security Workshop

The "Physical" Layer

Lee Swindlehurst
University of California Irvine

NSF NextG Security Workshop

- Physical Layer Security
> Ugly step-child of the security world
> But has a compelling story:
not subject to computational advances
natural shared randomness in wireless channel
perfect secrecy is theoretically possible
- Many advances of this decade have found their way to practice
> Massive MIMO
$>$ NOMA
> Hybrid beamforming
$>$ Cell-free or distributed MIMO, etc.
- Why not PLS?
> CSI often assumed for adversary (req'd for secrecy metrics)
> Strong assumptions about adversary => insistence on perfect secrecy
$>$ Design for worst case, conservative solutions
- Emphasis on secrecy performance, not on desired link reliability
$>$ Artificial noise/jamming not appropriate in interference-limited scenarios
> capability of PHY-generated keys is often limited
> cryptographic methods aren't chopped liver after all

Some Reasons for Optimism

- 5G and IoT
> may require lightweight security, room for PLS
$>$ emphasis on reliability, delay, massive connectivity
guaranteed low-rates, fixed constellations => finite alphabet metrics PLS is a plus for latency
connectivity => exploit multi-user interference to hide sensitive data constructive interference, symbol-level precoding
- Vehicular Networks
> We know where the adversaries are
$>$..... and we communicate with them!
> A role for AN/jamming here, but must consider radar performance
- Distributed MIMO \& mmWave
$>$ CSI reveals location information
$>$ Wide aperture creates secure microcells
> Also possible with UAVs

Some Reasons for Optimism

- Heuristic approaches
> fountain codes, exploits asymmetric decoding success
$>$ combine RF and biometric fingerprinting for authentication, key generation
$>\mathrm{Al} / \mathrm{ML}$ as a tool to extract common information for PHY keys
> non-linear precoding

