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Verified Data Planes [SIGCOMM ’18]

Credits: Bill Hallahan, Robert Soulé, many colleagues at Barefoot

Goal: automatically verify behavioral 
properties for network devices
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P4 is a domain-speci�c language for specifying the behavior of packet-processing systems. It is based on
an elegant design with high-level abstractions, such as parsers and match-action pipelines, which can be
compiled to e�cient implementations in hardware or software. Unfortunately, like many industrial languages,
P4 lacks a formal foundation. The P4 speci�cation is a 160-page document with a mixture of informal prose,
graphical diagrams, and pseudocode. The reference compiler is complex, running to over 40KLoC of C++ code.
Clearly neither of these artifacts is suitable for formal reasoning.

This paper presents a new framework, called P���4, that puts P4 on a solid foundation. P���4 uses
standard elements of the semantics engineering toolkit, namely type systems and operational semantics,
to build a compositional semantics that assigns an unambiguous meaning to every P4 program. P���4 is
implemented as an OCaml prototype that has been validated against a suite of over 750 tests from the reference
implementation. While developing P���4, we discovered dozens of bugs in the language speci�cation and the
reference implementation, many of which have been �xed. Furthermore, we have used P���4 to establish the
soundness of P4’s type system, prove key properties such as termination, and formalize a language extension.

1 INTRODUCTION
Most networks today are designed and operated without the use of formal methods. The philosophy
of the Internet Engineering Task Force (IETF), which manages the standards for protocols like TCP
and IP, can be summarized by David Clark’s slogan: “we believe in rough consensus and running
code.” Likewise, Jon Postel’s famous dictum to “be conservative in what you do, be liberal in what
you accept from others,” advocates for a kind of robustness that is achieved not by adhering to
precise logical speci�cations, but rather by designing systems that can tolerate minor deviations
from perfect behavior.

But while it is hard to argue with the success of modern networks, one only has to glance at the
recent headlines to see that operating a network correctly is becoming a huge challenge, especially at
scale [Svaldi 2019]. Outages due to hardware and software bugs occur with alarming frequency and
often lead to costly outages, mysterious performance degradations, and even security vulnerabilities.
A recent survey found that network outages occur several times a month in approximately one
third of organizations, with human factors often a primary cause [Dimensional Research 2016].
Given this context, it is natural to ask whether formal methods may assist in building net-

works that behave as intended. Indeed, a number of recent tools including Header Space Analysis
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h�,f, n, gi +g g 0 Type simpli�cation

hC,�,f, n,3 G : g := expi +copy hf 0, G 7! ✓, lval := ✓i Copy-in copy-out
hC,�,f, n, lval := vali +write f 0 L-value assignment
hC,�,f, n, expi +lval hf 0, lvali L-value evaluation
hC,�,f, n, expi + hf 0, vali Expression evaluation

hC, G, val : Gi +match G (exp) Match-action evaluation
hC,�,f, n, stmti + hf 0, n 0, sigi Statement evaluation
hC,�,f, n, decli + h�0,f 0, n 0, sigi Declaration evaluation

Fig. 11. Selected judgment signatures from the dynamic semantics.

3.3 Dynamic semantics
The dynamic semantics for Core P4 are de�ned in a big-step style. Figure 11 gives the types of the
main judgments. Local state is split into a store and an environment to implement the scoping of
mutable variables. The environment maps names of variables to store locations, and the store maps
locations to values. This decoupling allows closures to “see” updates to mutable variables saved in
their environments.
Morally speaking, P4 programs are deterministic. The semantics of Core P4 does introduce

nondeterminism in a few places to simplify the presentation or to model target-dependent behavior.
For example, the result of reading an invalid header is an unde�ned value, which may vary
from target to target and even from read to read within a single program. In the semantics, we
write havoc(g) to indicate an operation producing an arbitrary value of type g . Table invocations
are evaluated by making an arbitrary choice from the table’s actions, rather than de�ning an
algorithm for selecting the matching rules out of a list. As mentioned previously, we give tables
unique identi�ers for control plane use by reusing locations ✓ , which are also generated non-
deterministically, although this is not essential.
Statements evaluate to signals, which indicate how control �ow should proceed. Expressions

evaluate to signals as well but with values val in place of the continue signal. The signals are
how Core P4 models non-standard control �ow. To save space, we elide the “unwinding” rules for
handling signals other than continue or val in most places. For each intermediate computation
with outputs f and n if that computation terminates in exit or return val, the overall computation
freezes the state at hf, ni and propogates the signal.

3.3.1 Copy-in copy-out rules. The possibility that side e�ects may occur during evaluation of an
expression makes copy-in copy-out fairly subtle. Suppose a function has a parameter inout G : g
and has been invoked with the argument 4 [5 ()], where 5 () performs some side e�ect and then
returns an index into 4 . It would be natural to �rst save l-values for all the arguments marked out
and then evaluate all the arguments to values. Unfortunately, with side e�ects in arguments, this is
not correct. The right thing to do is to save the l-value and then further evaluate the l-value to a
value, as de�ned in the copy-in copy-out judgment, shown in �g. 12.

3.3.2 Expression evaluation. Unary operations, binary operations, and casts are axiomatized. Rather
than spell out all the legal casts or arithmetic expressions, we assume we have typing and evaluation
oracles for each of them which agree. For unary and binary operations, this means that there is a
typing function T and an evaluation function E. For casts, this means there is agreement between



HyperFlow [CCS ’18]

Software
• DIFC policies: confidentiality, integrity 
➙ Mutually distrusting yet communicating parties

• New HW-SW contract for timing-safe IFC 
➙ Encode expressive security policies in hardware

• Tagged architecture for enforcement 
➙ Remove timing channels

• Secure HDL for information flow security  
    ➙ Timing-sensitive non-interference

ISA

MicroArch

HDL

Goal: timing-safe information flow security 
with expressive policies and strong assurance
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